

Introduction to E&Ls

Overview

What industries need to determine E&Ls

Define extractables and leachables

Basic overview of an E&L study

Regulatory landscape

Jordi Labs

A leader in plastics analysis

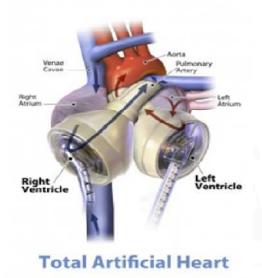
- Founded in 1980
- Over 1000 projects completed annually
- State of the art facilities and instrumentation
- 80% of staff are degreed chemists (Ph.D., M.S., B.S.)

Extractables and Leachables Analysis

- Identification/Quantification
- Comprehensive Databases
- Pharmaceutical
- Food Contact
- Medical Device

Investigative Analyses

- Deformulation/Reformulation
- Polymer and Additive
 Identification
- Discoloration
- Off-odors
- Cracking, brittleness



Who Needs E&L's

Biomedical Devices

Food Packaging

Pharmaceutical Packaging

What are Leachables & Extractables?

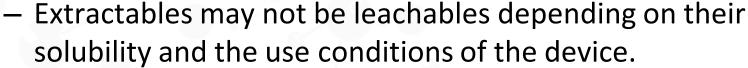
Leachables are:

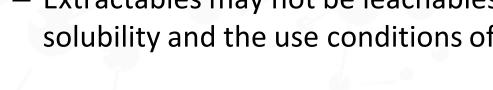
Trace amounts of chemicals originating from packaging, containers, medical devices or process equipment that end up as contaminants in medicinal products or food resulting in exposure to patients or consumers.

Extractables are:

Substances that can be released from a medical device, pharmaceutical packaging or food contact surface using extraction solvents and/or extraction conditions that are expected to be at least as aggressive as the conditions of use.

ISO-10993-12



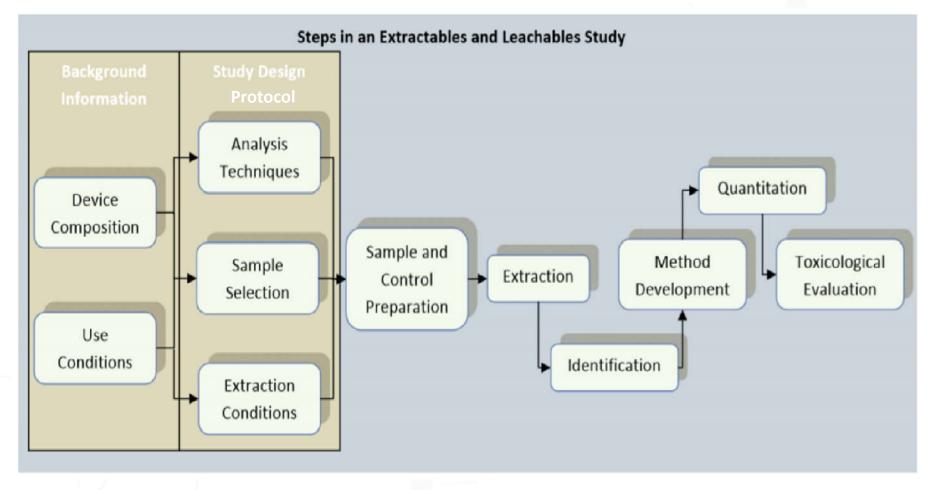


Introduction to Es and Ls

Examples of E&Ls

- Small molecules present in a polymer system including:
 - **Antioxidants**
 - Surfactants
 - Slip agents
 - **Plasticizers**
 - Acid scavengers
 - Cross linking agents
 - Residual monomers and *oligomers*
 - Polymerization side products
 - **Process Impurities**

Reasons for Examining Ls


- Allows determination of the actual species expected to leach under the clinically relevant conditions
- Used to perform the toxicological evaluation and to establish product safety

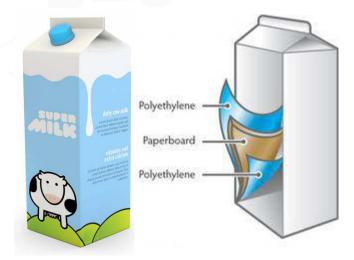
Reasons for Examining Es

- Establish the worst-case leachables
- Identify accumulation levels over the shelf-life of a product
- Development of safe and effective packaging/delivery systems, manufacturing systems, and processes
- Facilitate investigations into the origin(s) of identified leachables whose presence causes out-ofspecification (OOS) results for a marketed product.

E&L Study

Quality Control in an E&L Study

- The accuracy and reliability of an E&L study should be confirmed using rigorous quality control measures.
- This includes:
 - Analysis Blanks
 - Negative Control
 - Positive Controls and Spiking Studies



Sample Selection

• The primary consideration in sample selection is that the specimen is representative of the final product as applied to the patient.

Sample Preparation

- Analysis of an entire device or package is often used
 - Full Fill
 - Cut & Cover
- If this is impractical or not appropriate
 - Composite Samples
 - Single Sided Extraction

Types of Extractions

Simulated-use Extraction

 An extraction conducted using a method that simulates the expected use conditions.

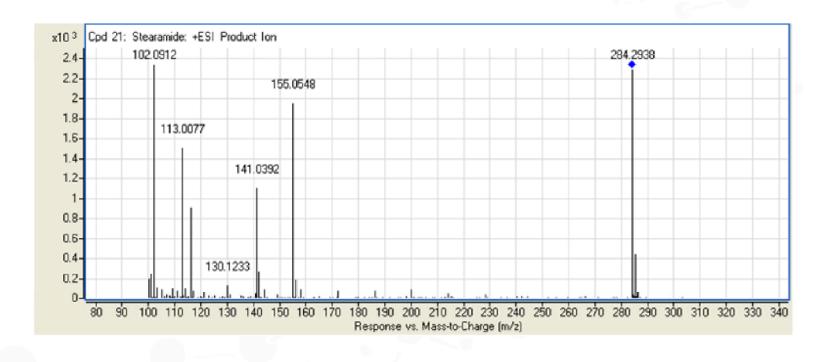
Exaggerated Extraction

 An extraction which uses conditions which are expected to cause a greater amount of extractable material to be released than using the simulated use extraction.

Exhaustive Extraction

 An extraction which is repeated until the total amount of extractables is less than 10% of the amount obtained during the initial extraction.

Identification of E&Ls (Qualitative Analysis)


Extracted components are identified using a combination of spectroscopy methods including LCMS, GCMS, headspace MS, NMR, FTIR and ICP-MS.

Jordi Identification Process

- MS is the prince of the analytical methods!
- Accurate Mass analysis for elemental formula determination (QTOF)
- Database searches to correlate mass spectra to known reference compounds
 - NIST and Wiley Mass Spectral Libraries
 - Jordi Proprietary Polymer Additives and Oligomer Database
- MSMS, HPLC-NMR and HPCL-FTIR analysis for structure elucidation
- Verification with an authentic reference material for retention time matching

QTOF-LCMS Identification of E&Ls

Compound Name	Precursor	Match	Rev	Fwd	Collision	Ionization
	Ion	Score	Score	Score	Energy	Mode
Stearamide	284.29400	90.842	100.000	81.684	30	ESI

Identification Confidence Level

- Mass Spectral Identification
 - A. Mass spectrometric fragmentation behavior
 - B. Confirmation of molecular weight
 - C. Confirmation of elemental composition
 - D. Mass spectrum matches automated library or literature spectrum
 - E. Mass spectrum and chromatographic retention index match authentic reference compound

Confirmed identification = A and B or C and D or E have been fulfilled Confident identification = Sufficient data to preclude all but the most closely related structures (combination of D with any of A, B, or C)

Tentative Identification = Data consistent with a class of molecules only

Quantitative Method Development

- Identified components must be quantitated to allow for toxicological evaluation
- Methods must be developed to allow for accurate quantitation
 - Chromatographic methods and spectroscopy methods

Validation of Analytical Methods

 Method validation should be performed to verify the performance characteristics of a method and to confirm that the method is suitable for the intended purpose.

Determination of E&L Concentration (Quantitative Analysis)

- Two primary approaches are applied for quantitation.
 - 1. Formal Quantitation (authentic reference compound)
 - 2. Relative Quantitation (surrogate standard)
- Techniques commonly applied include ICP-MS, LCMS, HPLC, NMR and GCMS

Acceptable Levels for Leachables

- Acceptable level of leachables depends on:
 - route of exposure
 - treatment duration
 - daily exposure
- Approaches to determine the safety threshold include:
 - Threshold of toxicological concern (TTC)
 - 1.5 μg/day Total Daily Intake (TDI) for Genotoxic impurities
 - Safety Concern Threshold (SCT) -
 - 0.15 μg/day TDI in Orally Inhaled Nasal Drug Products (OINDP)
 - Qualification Threshold (QT)
 - 5.0 μg/day TDI in Orally Inhaled Nasal Drug Products (OINDP)

Analytical Evaluation Threshold (AET)

- The TTC or SCT can be converted to an analytical threshold
- AET is the threshold at or above which a chemist should identify a particular leachable and/or extractable and report it for potential toxicological assessment.

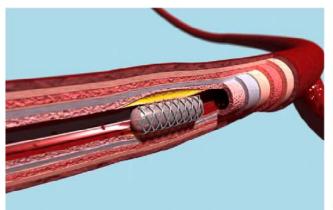
$$AET\left(\frac{\mu g}{container}\right) = \left(\frac{0.15\mu g/day}{doses/day}\right) x \left(\frac{labeled\ doses}{container}\right)$$

Analytical Evaluation Threshold (AET) Examples

Metered Dose Inhaler: 200 labeled actuations per canister, a recommended dose of 12 actuations per day, and a critical component elastomer mass per valve of 200 mg.

$$AET\left(\frac{\mu g}{container}\right) = \left(\frac{0.15\mu g/day}{12}\right)x(200)$$
$$= 2.5\mu g/canister$$

$$AET\left(\frac{\mu g}{g}\right) = \left(\frac{2.5 \ \mu g/canister}{0.2 \ g \ elastomer}\right) x(1 \ canister)$$
$$= 12.5 \ \mu g/g$$


Analytical Evaluation Threshold (AET) Examples

Inhalation Solution with 3 mL of drug product contained in a low density polyethylene (LDPE) container weighing 1 g, with a recommended dose of 3 containers per day.

$$AET\left(\frac{\mu g}{container}\right) = \left(\frac{0.15\mu g/day}{3\ doses/day}\right)x(1\ dose/cont.)$$
$$= 0.05 \frac{\mu g}{container} = 0.05 \frac{\mu g}{g}$$

E&L Regulations

Biomedical Devices

- ■ISO 10993
- ■FDA Memorandum #G95-1

Food Packaging

■ FDA: Guidance for Industry: Preparation of Premarket Submissions for Food Contact Substances:

Chemistry

Pharmaceutical Packaging

- USP <661>
- USP <1663>
- USP <1664>

Regulations

USP <661> Plastic Packaging Systems and Their Materials of Construction

USP <661.1> Plastic Materials of Construction

USP <661.2> Plastic Packaging Systems for Pharmaceutical Use

Informational Chapters

USP <1663> "Assessment of Extractables Associated with Pharmaceutical Packaging/Delivery Systems"

USP <1664> "Assessment of drug product leachables associated with pharmaceutical packaging/deliver systems"

Additional Informational Chapters

USP <1664.1> "Orally Inhaled and Nasal Drug Products"

USP <1665 > "Toxicological Assessment"

Future Chapters

USP <661.3> "Plastic Systems Used for Manufacturing Pharmaceutical Products"

USP <661.4> "Plastic Medical Devices used to Deliver or Administer Pharmaceuticals "

Leachables Specifications in Individual Monographs

High level view!

Three Tiered Approach

- material-of-construction characterization
- packaging system characterization
- pharmaceutical product characterization

Well Characterized Materials:

- 1. Identity
- 2. Physiochemical properties
- Extractable metals
- 4. Additives
- 5. Bio-compatibility

Suitable Materials:

- 1. Uses well characterized materials <661.1>
- 2. Physiochemical properties
- 3. Compatible with packaged drug product
- 4. Chemical assessment (21 CFR Indirect Food Additives, 661.1 and E&Ls)
- 5. Bio-compatibility (USP <87>, <88>)

USP <661> Plastic Packaging Systems and their Materials of Construction

Purpose: Chapter <661> is the primary chapter which establishes the rationale behind the testing requirements and specifications that appear in its subsequent sections.

Specific Polymer Requirements for:

- Polyethylene (HDPE and LDPE)
- 2. Polypropylene
- 3. Polyethylene Terephthalate

Under Revision: Subchapters are being added that are relevant for a particular type of test article.

USP <661.1> Plastic Materials of Construction

Purpose: *Materials Characterization, a* material is well characterized:

- 1. Identity (FTIR, DSC)
- 2. Biocompatibility (USP <87>, <88>)
- Physicochemical properties (Extraction, UV absorbance, pH, TOC)
- Additives
 (Extraction, chromatographic analysis)
- Extractable metals (Extraction, ICP-MS, AA)

<USP <661.2> Plastic Packaging Systems for Pharmaceutical Use

Purpose: Packaging System Characterization; packaging is <u>suitable</u>:

- 1. Biological Activity (USP <87>, <88>)
- Physicochemical Tests (Extraction, UV absorbance, pH, TOC)
- 3. Extractables/Leachables
- 4. Safety Assessment

USP < 1663 >

"Assessment of Extractables Associated with Pharmaceutical Packaging/Delivery Systems"

GENERATING THE EXTRACT

Experimental Design

EXTRACTION PARAMETERS

Chemical Nature of Extracting the Medium
Extraction Time and Temperature
Extraction Stoichiometry
Mechanism of Extraction-Extraction Technique
Extractions That are Not Solvent Mediated

USP < 1663 >

"Assessment of Extractables Associated with Pharmaceutical Packaging/Delivery Systems"

CHARACTERIZING THE EXTRACT

Objectives and Challenges

Processes Involved in Extract Characterization

- 1. Scouting
- 2. Discovery
- 3. Identification
- 4. Quantitation

Preparation of Extracts for Analysis

SUMMARY

Assessing the Completeness of an Extractables Assessment Example Extractables Profiles and Materials Characterization

USP <1664>

"Assessment of Drug Product Leachables Associated with Pharmaceutical Packaging/Delivery Systems"

CONCEPTS

General Concepts for Leachables Assessment Safety Thresholds Information Sharing

LEACHABLES CHARACTERIZATION

Analytical Thresholds
Analytical Method Requirements
Prepare the Drug Product for Analysis
Analytical Techniques
Quantitative Methods and Validation

USP < 1664>

"Assessment of Drug Product Leachables Associated with Pharmaceutical Packaging/Delivery Systems"

ESTABLISHING A LEACHABLES- EXTRACTABLES CORRELATIONS

CONSIDERATIONS IN DEVELOPING LEACHABLES SPECIFICATIONS AND ACCEPTANCE CRITERIA

ADDITIONAL CONSIDERATIONS

Simulation Studies Inorganic (Elemental) Leachables

Degree of Concern	Likelihood of Packaging Component-Dosage Form Interaction				
Associated with Route of Administration	High	Medium	Low		
Highest	Inhalation: Aerosols, Sprays	Injections and Injectable Suspensions; Inhalation Solutions	Powders: Sterile, Injectable, Inhalation		
High	Transdermal Ointments and Patches	Ophthalmic Solutions and Suspensions Nasal Aerosols and Sprays			
Low	Topical: Solutions and Suspensions, Aerosols Oral: Solutions and Suspensions		Oral: Tablets, Capsules, Powders Topical: Powders		

Revised table adapted from USP <1664>; http://www.usp.org/sites/default/files/usp_pdf/EN/meetings/workshops/m7127.pdf

Thank you!

